Myocardial reperfusion injury: etiology, mechanisms, and therapies.
نویسندگان
چکیده
Reperfusion of ischemic myocardium is required for tissue survival; however, reperfusion elicits pathologic consequences. Myocardial reperfusion injury is a multifarious process that is mediated in part by oxygen free radicals, neutrophil-endothelium interactions, apoptosis, and intracellular calcium overload. The oxygen paradox describes the contradictory need to delivery oxygen to ischemic tissue and the resultant reduction of oxygen to form free radicals that are involved in macromolecule oxidation, membrane disfunction, apoptosis, and damaged calcium sequestering ability, which results in hypercontracture. These cell-damaging crises are amplified by the excessive activation of neutrophils, which promote the formation of proinflammatory mediators, oxygen radicals, and the reduction of endothelial nitric oxide formation, leading to increased neutrophil-endothelium interactions and capillary occlusion. Neutrophil action is twofold, however, because it is required for necrotic debris removal after severe ischemia. The oxygen radicals produced by neutrophils, endothelium, and myocytes may also play a role in activating the apoptotic cascade. Although the role of apoptosis in reperfusion injury is controversial, apoptotic cells are found in infarcted tissue. One of the key mediators may be increased inner mitochondrial membrane permeability, resulting in reduced ATP formation, release of cytochrome c, and caspase activation, which is key to promotion of apoptosis. Increased mitochondrial membrane permeability occurs during exposure to supraphysiological calcium concentrations. This occurs because of compensatory Na+/Ca2+ exchange to remove the excess intracellular sodium resulting from decreased Na+/K+ pumping during ischemia and increased Na+/H+ exchange following reperfusion. Supraphysiological calcium elicits hypercontracture and cellular damage. The various therapies being developed to diminish myocardial reperfusion injury involve inhibition of the processes described above as well as others. Although single therapies have shown some promise, the complexity of the response to reperfusion has made dramatic improvement elusive. Effective treatment will most likely require multifaceted antagonism of the numerous pathological cascades initiated by reperfusion.
منابع مشابه
Pathophysiology of Ischemia/Reperfusion-induced Myocardial Injury: What We Have Learned From Preconditioning and Postconditioning?
Organ damage after reperfusion of previously viable ischemic tissues is defined as ischemia/reperfusion injury. The pathophysiology of ischemia/reperfusion injury involves cellular effect of ischemia, reactive oxygen species and inflammatory cascade. Protection against ischemia/reperfusion injury may be achieved by preconditioning or postconditioning. In this review, we discuss basic mechan...
متن کاملThe effect of asafoetida essential oil on myocardial ischemic-reperfusion injury in isolated rat hearts
Objective: Previous studies reported that asafetida from Ferula assa-foetida Linn. species and its essential oil (AEO) have antioxidant effects. In the present study, the effect of AEO was evaluated on ischemic-reperfusion injury in isolated rat hearts. Materials and Methods: Forty-eight male Wistar rats were divided into 6 groups: 1) control group, 2) vehicle group, 3-5) AEO groups and, 6) car...
متن کاملPreconditioning Effect of High-Intensity Aerobic Training on Myocardial Ischemia-Reperfusion Injury and Beclin-1 Gene Expression in Rats
Purpose: Ischemia-Reperfusion (IR) injury is one of the most common cardiac disorders leading to irreversible heart damage. Many underlying mechanisms seem to be involved, among which disruption of cellular autophagy balance. Since physical training has a beneficial effect on the improvement of autophagy balance, it may have a cardioprotective effect against IR injury. This study investigates t...
متن کاملEvolving therapies for myocardial ischemia/reperfusion injury.
The damage inflicted on the myocardium during acute myocardial infarction is the result of 2 processes: ischemia and subsequent reperfusion (ischemia/reperfusion injury). During the last 3 decades, therapies to reduce ischemic injury (mainly reperfusion strategies) have been widely incorporated into clinical practice. The remarkable reduction in death rates achieved with these therapies has res...
متن کاملPlatelets, diabetes and myocardial ischemia/reperfusion injury
Mechanisms underlying the pathogenesis of ischemia/reperfusion injury are particularly complex, multifactorial and highly interconnected. A complex and entangled interaction is also emerging between platelet function, antiplatelet drugs, coronary diseases and ischemia/reperfusion injury, especially in diabetic conditions. Here we briefly summarize features of antiplatelet therapy in type 2 diab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of extra-corporeal technology
دوره 36 4 شماره
صفحات -
تاریخ انتشار 2004